

Integrated CleanDrill[™] Reservoir Drill-in Fluid and ORCA[™] Breaker Treatment Minimizes Formation Damage and Reduces Costs, Delivering Higher than Expected Production, Offshore Romania

An engineered solution was designed to comply with governmental and environmental regulations to successfully complete a challenging offshore well

CHALLENGE	SOLUTION	RESULT
 Integrated fluid solution 	 CleanDrill[™] minimally damaging 	 Reduced rig days and
non-damaging to the	brine-based reservoir drill-in fluid	costs to complete well
reservoir	(RDF)	by eliminating the need
Only environmentally-	ORCA Breaker Fluid by	for additional acidizing
friendly products	Cleansorb™, a Newpark Company	jobs
accepted	 ClearBridge[™] lost circulation 	OHGP completion
Achieve a fluid loss lower	modeling software	performed
than 3 ml	 TrueCarb[™] bridging agents 	 Higher than expected production achieved

OVERVIEW

Newpark was selected by an offshore operator in Romania to engineer an integrated fluid system combining a reservoir drill-in fluid (RDF) with a compatible and effective breaker fluid treatment to remove the drilling fluid filter cake with minimal damage to the reservoir formation.

The operator's goals included protecting the reservoir integrity to allow an open-hole gravel pack (OHGP) completion.

CHALLENGE

The drilling parameters that needed to be achieved included obtaining a fluid loss lower than 3ml using a PPT (500 PSI differential) at 38 °C as BHST and with 10 microns aloxite discs.

The customer demanded only the use of formulations non-damaging to the reservoir, with a minimum quantity of products in the recipe to reduce the volumes of chemicals on the offshore rig.

An additional challenge came from government regulators who were required to approve all products to mitigate the potential for environmental impact as only CEFAS / PLONOR registered chemicals were only allowed to be used.

This project was therefore unique in that Newpark had to ensure a synergy between a minimally damaging RDF and compatible breaker treatment, while complying with the environmental regulations, and creating a bridging strategy that would be effective in sealing any fractures.

Moreover, the entire fluid volume used for the reservoir section had to be prepared in 24 hours within the exact specified parameters. For this reason, the experience and expertise of the Newpark fluids specialists was paramount during the planning phase as there would be no time to adjust the properties while drilling.

SOLUTION

Following extensive laboratory testing, Newpark fluid specialists selected the CleanDrill[™] minimally damaging monovalent brine-based reservoir drill-in fluid together with the ORCA[™] breaker fluid from Cleansorb[™], a Newpark company.

Compatibility and performance of the RDF and breaker formulations were rigorously tested together to achieve optimum drilling performance and the highest return permeability.

Results of the testing are shown below:

Test results after static aging (at 40°C / 350 PSI for three days) of the mud cake obtained after 2 hours of HP/HT filtration (2mm mud cake)

TEST TIME	Weight (grams)	Mud cake remaining %	Mud cake decomposed %
Ceramic Disk before filtrate	46.51	-	-
Ceramic Disk with Mud Cake	50.65	100.00% (4.14 gr)	-
3 days	46.87	8.69% (0.36 gr)	91.31%

After the three days, the mud cake was checked visually (as seen in the photos below). The mud cake is completely removed (dissolved).

The breaker pill, after being removed from the cell, has a pH of 4.80.

Mud cake 2 hours – 2 mm height before aging	Ceramic disk after 3 days of breaker treatment

Utilizing our proprietary ClearBridge[™] lost circulation modeling software, Newpark developed a bridging strategy incorporating the TrueCarb[™] family of high-performance, acid-soluble, ground marble bridging agents. These materials provide an efficient, cost-effective solution to mitigate downhole losses in the reservoir and are non-damaging to formations while managing the risks associated with lost circulation events.

iging Median Pore T	hroat (DS0) (µn	n)			1	7 Calcium Carbonate •	Avg. Error: 28.25% Max. Error: 69.75%
Blend Concen	tration		72 (ppb)	T١	/D Reference	(st) 0.	Median Pore Throat [D50] (µm)
Product		Percent	D10	D50	D90		instant of the first for the first
Avacarb	1	0.0	2	13	52		100.0
Avacarb ME	4	0.0	3	30	85		100.0
Intaflow	10	0.0	10	74	187		90.0
NewCarb C	V	0.0	2	29	162		
NewCarb F	V	0.0	1	8	39		80.0
NewCarb M	1	0.0	2	15	43		
TrueCarb 10	1	33.3	1	10	35		70.0
TrueCarb 1200	12	0.0	975	1235	1538		Percent Finer (36)
TrueCarb 150	12	0.0	49	143	302		5 000 I
TrueCarb 1800	12	0.0	1376	1771	2082		E 50.0
TrueCarb 25	1	0.0	3	26	65		T T
TrueCarb 400	問	0.0	315	402	503		8 40.0
TrueCarb 5	197	66.7	2	8	19		a
TrueCarb 50	5	0.0	7	37	85		30.0
TrueCarb 800	13	0.0	530	751	935		20.0
							10.0
							0.0 ¹ 0.0 ¹ 5.0 ¹ 10.0 ¹ 15.0 ¹ 20.0
							Particle Size (µm)
							r ar dele size (fair)
							Max Pore Throat Optimal Blend
							Target

In addition to providing the complete suite of products required for this project, the Newpark scope also included comprehensive laboratory testing support, fully stocked warehouse and a liquid mud plant (LMP) facility.

RESULTS

The reservoir section was drilled in accordance with plan, with zero issues or downtime. The OHGP completion was successfully performed and, as a result of the successful ORCA breaker treatment, no solids were identified during well testing operations.

The integrated fluids solution utilizing non-damaging products eliminated the need for any additional cleanup runs or acid treatment jobs.

In addition to this considerable cost saving, the thorough filter cake removal and successful completion allowed the well to deliver higher than expected production.

